A segmentation system with model-assisted completion of video objects

نویسندگان

  • Dirk Farin
  • Peter H. N. de With
  • Wolfgang Effelsberg
چکیده

This paper presents a new algorithm for video-object segmentation, which combines motion-based segmentation, high-level object-model detection, and spatial segmentation into a single framework. This joint approach overcomes the disadvantages of these algorithms when applied independently. These disadvantages include the low semantic accuracy of spatial segmentation and the inexact object boundaries obtained from object-model matching and motion segmentation. The now proposed algorithm alleviates three problems common to all motion-based segmentation algorithms. First, it completes object areas that cannot be clearly distinguished from the background because their color is near the background color. Second, parts of the object that are not considered to belong to the object since they are not moving, are still added to the object mask. Finally, when several objects are moving, of which only one is of interest, it is detected that the remaining regions do not belong to any object-model and these regions are removed from the foreground. This suppresses regions erroneously considered as moving or objects that are moving but that are completely irrelevant to the user.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

Shape Training for Video Object Segmentation

Since most algorithms for automatic video segmentation cannot extract video objects in a picture frame accurately, we can take a user-assisted approach in generating VOPs of moving objects. In this paper, we propose a semiautomatic video segmentation algorithm using semantic information. In order to reduce effects of unwanted feature points due to the low-level image processing operations, we e...

متن کامل

Modified CLPSO-based fuzzy classification System: Color Image Segmentation

Fuzzy segmentation is an effective way of segmenting out objects in images containing both random noise and varying illumination. In this paper, a modified method based on the Comprehensive Learning Particle Swarm Optimization (CLPSO) is proposed for pixel classification in HSI color space by selecting a fuzzy classification system with minimum number of fuzzy rules and minimum number of incorr...

متن کامل

Segmentation Assisted Object Distinction for Direct Volume Rendering

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...

متن کامل

A Novel Approach to Background Subtraction Using Visual Saliency Map

Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003